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Abstract—The application of radio-based positioning systems
is ever increasing. In light of the dissemination of the Internet of
Things and location-aware communication systems, the demands
on localization architectures and amount of possible use cases
steadily increases. While traditional radio-based localization is
performed by utilizing stationary nodes, whose positions are
absolutely referenced, collaborative auto-positioning methods aim
to estimate location information without any a-priori knowledge
of the node distribution. The usage of auto-positioning decreases
the installation efforts of localization systems and therefore allows
their market-wide dissemination. Since observations and position
information in this scenario are correlated, the uncertainties of all
nodes need to be considered. In this paper we propose a discrete
Bayesian method based on a multi-dimensional histogram filter
to solve the task of robust auto-positioning, allowing to propa-
gate historical positions and estimated position uncertainties, as
well as lowering the demands on observation availability when
compared to conventional closed-form approaches. The proposed
method is validated utilizing different multipath-, outlier and
failure-corrupted ranging measurements in a static environment,
where we obtain at least 58% higher positioning accuracy
compared to a baseline closed-form auto-positioning approach.

Index Terms—Auto-Positioning, Self-Calibration, Collabora-
tive Positioning, Wireless Sensor Networks (WSN), Markov
Localization, Ultra-Wideband (UWB)

I. INTRODUCTION

The development of location-based services (LBS) enabled
by radio-based localization comprises a vast majority of indoor
positioning systems (IPS) [1]. With the on-going integration
of communication and localization systems [2], especially in
the context of the Internet of Things (IoT) [3] and future,
beyond 5G mobile communication systems [4], diversification
of conventional radio-based IPS is constantly increasing. This
includes technologies [5], network architectures [2], use cases
and corresponding positioning scenarios [6].

Traditionally, radio-based localization is performed by clas-
sifying network nodes into two categories: stationary anchors
or base stations, whose positions are known, and mobile tags,
whose locations are of interest [7]. With this in mind, the
localization of mobile nodes is only achievable when a certain
amount of stationary devices are present and their locations
is precisely determined a-priori. However, the aforementioned
diversification and on-going network densification possibly
leads to a rise in IPS at a scale, where anchor-individual
surveying will not be feasible anymore.
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Fig. 1: Collaborative auto-positioning for smart parking appli-
cations: State estimation and associated uncertainties based on
probability grid mapping (purple, reference positions in red).

In addition, a strict distinction between stationary and
mobile devices will not be applicable anymore due to the
variant nature of many applications, where variability of the
environment is a main focus and non-stationary configurations
are imperatively required. While this may be regarded chal-
lenging conceptionally, these new architectures also provide
the capabilities for immersive IPS and ehance their scalability.

A potential use case in the context of intelligent transporta-
tion systems (ITS) is depicted in Fig. 1 [8], where LBS for
in-house parking are provided. In this example, the amount of
stationary anchors can drastically be reduced by incorporating
quasi-static devices representing parking cars. This use case
is addressed as efficient parking is one of the main challenges
for individual motorized transportation in urban areas [9]. In
this context, the usage of auto-positioning enables a time- and
cost-efficient roll out of IPS by dispensing positional surveying
of stationary nodes. In addition, static infrastructure can be
reduced as quasi-static nodes can be incorporated. This also
corresponds to a variety of use cases in other application fields.
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A. Status quo of Auto-Positioning

For this task, collaborative auto-positioning, also known
as self-calibration, is intended as the automatic procedure
that allows anchor nodes to identify their own locations
without additional interventions, e.g. manual surveying [10].
In the context of location-aware communication systems, auto-
positioning can aid to increase the applicability and scalability
of both device-based and device-free localization [11]. This
holds true, especially for dense, location-aware networks like
5G [12], [13].

The basic idea of auto-positioning is related to collaborative
localization, which has been intensively studied in the past
years [14], where inter-mobiles ranges are used to support
the localization process and still rely on previously surveyed
locations of the reference points. A comprehensive survey and
literature review of self-calibration and collaborative localiza-
tion, especially emphasizing their differences and similarities
is given in [10]. Theoretical works with regards to achievable
performance are provided in [15], where the Cramér-Rao lower
bound for auto-positioning is investigated.

A common approach to auto-positioning without any pre-
surveyed anchor positions is the usage of closed-form (CF)
methods as proposed in [15]–[17]. These methods are based
on similar assumptions for auto-positioning, which will further
be discussed in Section II. However, CF methods require
the simultaneous incorporation of observations obtained from
multiple nodes. Hence, the success rate in the presence of
unknown constellations and measurement failures is limited.

A Least-Squares-Estimation (LSE) approach is used in [16]
to minimize the errors between the inter-anchor measurements.
The calibration of the anchors is done if a certain error thresh-
old is exceeded. The automate coordinate formation in [17] is
supplemented with a node placement strategy and an outlier
removal algorithm. Ref. [18] utilizes additional calibration
modules within the network in order to reduce the positional
error. For this additional anchor calibration, the performance
of three localization algorithms is tested via multidimensional
scaling, semidefinite programming and iterative trilateration.

In order to further increase the accuracy of auto-positioning
based on trilateration by means of hardware and ranging
enhancements, [19] proposes an antenna delay calibration
based on an Asymmetric Double-sided Two-way Ranging
(ADS-TWR) scheme. Furthermore, [20] proposes two novel
algorithms to improve the accuracy and success rate of auto-
positioning, namely Triangle Reconstruction Algorithm (TRA)
and Channel Impulse Response Positioning (CIRPos). Both
algorithms, were tested in a simulated environment. With
regards to technologies, most of the cited works investigated
the proposed methods based on Ultra-Wideband (UWB) re-
spectively simulation procedures.

In general, auto-positioning leads to correlated inter-node
observations, whose uncertainties with respect to the position
information and measurement noise need to be considered dur-
ing estimation. Especially in the presence of non-line-of-sight
and multipath propagation robust state estimation is required,

as these error types lead to non-gaussian residual distributions,
which hurt the presumptions of estimators like the LSE. The
works in [18]–[21] target the accuracy improvement of self-
calibration by identifying non-line-of-sight observations, e.g.
by applying machine learning.

B. Focus and structure of this paper

This paper presents a grid-based Bayesian formulation of
the collaborative auto-positioning problem for IPS. A grid-
based representation was chosen in order to provide a shared
state space for collaborative users and to potentially include
a-priori knowledge about the environment. The presented, non-
parametric filtering approach provides a robust state estimation
compared to conventional CF methods for non-stationary and
unknown network configurations, while lowering the require-
ments with regards to connectivity and availability of viable
ranging measurements. To underline this, we use multipath-
and outlier-corrupted simulation data aiming to provide a
real-world proximate data foundation for method validation.
The simulation procedure emulates UWB range measurements
with respect to three different scenarios.

The rest of the paper is organized as follows: Section II
describes a baseline CF auto-positioning method. The there
described relations are used for initialization of the grid-based
auto-positioning method, which is presented in Section III. In
order to validate the proposed method, a brief introduction
on the applied empirical simulation method for three differ-
ent ranging residual distributions and quantitative positioning
accuracy results for these scenarios are given in Section IV.
The paper concludes with a summary and proposals for future
research work in Section V.

II. CLOSED-FORM AUTO-POSITIONING

The aforementioned CF methods for auto-positioning based
on distance measurements are applied by meeting a variety of
presumptions. In order to estimate the positions of three an-
chors A0, A1 and A2 within a network, the methods proposed
in [15] and [20] formulate the following presumptions:

• A0 is situated at the coordinate origin;
• The direction from A0 to A1 defines the positive x-axis;
• A2 lies in the half-plane with positive y-coordinate;
• Extension: A3 lies in the positive z-direction.
A corresponding two-dimensional constellation and the

provided pair-wise distance measurements d are depicted in
Fig. 2. Given this frame, each anchor position An is defined
as An = [xn, yn]

ᵀ. Assuming a total of N -nodes, the inter-
anchor distances form the square measurement matrix Dt at
timestep t:

Dt =


d0,0 d0,1 · · · d0,N
d1,0 d1,1 · · · d1,N

...
...

. . .
...

dn,0 dN,1 · · · dN,N


Please note, that the x-coordinate of A1 represents the

measured distance between itself and node A0.
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Fig. 2: Configuration of network nodes A0 to A2 and their
pair-wise distances d.

A0 = [x0, y0]
ᵀ = [0, 0]ᵀ (1)

A1 = [x1, y1]
ᵀ = [d01, 0]

ᵀ (2)

A2 = [x2, y2]
ᵀ = [

d202 − d212 + x21
2x1

,
√
d202 − x22]ᵀ (3)

Additional nodes in the network can be calculated via
Eq. (3) or estimated based on the position data of the first
three nodes and their ranges to them. A detailed derivation of
Eq. (3) is given in [17].

Given CF approaches, we identify two major challenges
when it comes to real-world applications: Presence of cor-
rupted measurements (multipath reception and outliers) and
measurement failures. Concerning the latter, both the pair-wise
distances d0,1 between A0 and A1 and the respective ranging
measurements to the node of interest n d0,n and d1,n need to
be available in order to estimate node positions for n > 1. In
the presence of measurement confusions, failures and nodes
possibly being out of reception range, this leads to descending
success rates, which we will further discuss in Section IV.
In addition, CF methods as well as parametric estimators
are performing poorly in the presence of non-line-of-sight
(NLOS) and multipath reception as well as correlation between
observations. Therefore real-world scenarios provide inherent
challenges for these methods, which need to be considered.

III. BAYESIAN AUTO-POSITIONING APPROACH

In order to do so, we propose a Bayesian formulation
based on a discrete grid in order to solve the auto-positioning
problem. This Markov Localization recursively estimates the
a-posteriori probability density function (pdf), commonly ref-
fered to as belief or posterior, of the current state via the ob-
servation Likelihood, while incorporating process knowledge
and state history via the Markov assumption and Bayes’ rule
in order to provide a more robust state estimation [22]:

posterior ∝ likelihood× prior (4)

A. Fundamentals

The proposed method, which we will refer to as collabo-
rative grid positioning (CGP) is based on an equidistant grid
representation of the state space, which therefore represents
possible realizations of the node’s location. This representation
was chosen because it provides a shared and unified state
space of multiple nodes while dispensing a foundation for non-
parametric state estimation, which is more robust towards non-
gaussian measurement noise and multi-modalities. The method
is also referred to as multi-dimensional histogram filter (HF)
[22], which corresponds to the point-mass filter [23].

For this method, the state space given the two-dimensional
state vector Xt = [xt, yt]

ᵀ representing the position of a node,
is decomposed in a discrete and finite set of M -equidistant
realizations XM :

dom(X ) = X1 ∪X2 ∪ . . .XM (5)

The general procedure for the estimation of a single node,
following the well-known Recursive Bayes’ Filter structure,
is given in Fig. 3, where the hidden state space vector X t is
incrementally estimated based on the last given state X t−1.

Initialization
dom(X )

Prediction
pt

Observation
pt

Observations
M t

Estimation
X̂t

t = 0 t = 1 : T

Fig. 3: Conceptual structure of CGP.

The corresponding calculations are given as follows [22]:

pt = pt−1

∑
m

P (X t,m|X t−1) (6)

pt = η pt

∑
m

P (Zt|X t,m) (7)

X̂ t = argmax pt, (8)

where pt and pt denote the predicted and the resulting
belief, based on the observation Likelihood P (Zt|X t,m) and
the normalization constant η. The resulting state estimation
X̂ t is obtained from maximizing the current belief.

B. Inter-node Likelihood calculation

In contrast to conventional radio-based localization systems,
where observations are only obtained from stationary anchors,
collaborative auto-positioning needs to consider and propagate
the associated uncertainties about the locations of the network
nodes. This also poses a major challenge in collaborative
positioning scenarios [24].

In order to underline this problem, the correlation and
statistical dependency is depicted in Fig. 4, which shows the
correlation dependencies of inter-node observations.



X k X k+1 X k+2 X k+n

Zk Zk+1 Zk+2 Zk+n

X k X k+1 X k+2 X k+n

P (Zt|X t)

P (Zt|X t)

P (X t+1|X t) ...

P (X t+1|X t) ...

Node 1

Observations

Node 2

Fig. 4: Graphical representation of the state estimation problem
based on correlated inter-node observations.

Therefore, the uncertainty of both the ranging measurements
σr as well as the uncertainties of the node estimations σAn

need to be accounted for Likelihood calculation. Given two
nodes A1,2 and in correspondence to [25], the inter-node
ranging noise is given as:

σ1,2 = σr +

√
tr(Σ̂1) +

√
tr(Σ̂2), (9)

where tr(·) denotes the trace operator. The node-individual
covariance matrices Σn can be computed as the sample
variance given the previously defined state space and the
calculated Likelihood for each sample by determining the
weighted average:

Σn,t ≈
∑
m

pm(Xm − X̂n,t)
2 (10)

A graphical example of the measurement uncertainties be-
tween a conventional range measurement obtained from a
stationary anchor compared to auto-positioning is given in
Fig. 5.

(a) Stationary (b) Non-stationary

Fig. 5: Observation variance: (a) Uncorrelated case with
stationary nodes; (b) Correlated case for non-stationary nodes.

Given the auto-positioning problem at hand, the observation
Likelihood based on the ranging measurement r can be
sampled from a normal distribution:

P (Z|Xm)← N (ym,Σ) (11)

where y denotes the euclidean distance residual between the
observed measurement and m-grid-node relation:

ym = ‖Xn −Xm‖2 − r (12)

C. Implementational Details

The structure and a flowchart of the CGP implementation
are visualized in Fig. 6. Similar to the CF, the position of
A0 is set to the origin of the coordinate system. Next up, the
position of A1 is estimated with the proposed CGP approach
in a one-dimensional representation, depending on the avail-
ability of the ranging measurement to A0. This dimensional
reduction corresponds to a HF and can be applied based on
the presumptions formulated in Section II.

Init An(n > 1)

Init A0

Set Position
A0 = [0, 0]

Init A1

Distance Matrix M t

check visibility()

M [0, 1]

== None

hf(M [0, 1])

check AncPos()

Mt+1

Xn

! = None

Init A0

set position()
A0 = [0, 0]

A2

AN

grid est anc()
t+ 1 t+ 1

n+ 1

Fig. 6: Flowchart of the proposed CGP auto-positioning.

In contrast to the CF, for CGP the next step is to estimate
the remaining sensor node positions based on all previously
estimated sensor node positions and their measured distances
to the node of interest. This is done by applying the two-
dimensional CPG as previously described. In order to lower
the demands on the availability of observations compared
to the CF approach, CGP does not require specific ranging
combinations to be available (cf. Section II), which raises
its robustness against measurement failures. This effect will
further be discussed in Section IV. Therefore, in each esti-
mation step, the visibility to all remaining nodes is checked
and available observations in combination with the originating
state estimation and associated uncertainty are taken into
account.

Due to the non-parametric nature of the CGP, NLOS recep-
tion and measurement outliers are compensated to a certain
extent, without the need for additional error identification and
mitigation, which helps in providing an easily applicable auto-
positioning approach.

IV. VALIDATION AND RESULTS

In order to assess the proposed auto-positioning method
with respect to the aforementioned challenges, a semi-
empirical ranging simulation procedure based on our pre-
viously published work [26] is applied. Since many high-
precision positioning systems for IPS are based on the UWB
technology, the simulation intends to rebuild typical error types
in magnitudes with respect to IPS scenarios. The simulation
procedure allows an adaptive tuning of parameters to ensure



real-world proximate performance validation. The scenario of
choice corresponds to the constellation depiced in Fig. 1.

A. Methodology

We assume that a ranging measurement r comprises the
true, euclidean distance between two nodes d = ‖A1 −A2‖2
and additive errors ε following [27]:

r =

d+ ε if p >
d

dmax

∅ else.
(13)

The additive error terms are modeled as linearly distant-
dependent with respect to an empirical maximum range dmax,
which can be set with regards to the application and technol-
ogy at hand. If the formulated condition is not met, a mea-
surement failure is simulated. In addition, the probability p for
sporadic measurement perturbations is modeled as a Bernoulli
experiment with p ∼ U(0, 1). The distance dependency of
errors was empirically shown in [26] and also influences the
success rate of simulated measurements. Depending on this
ratio, the classification of the error variable is obtained from:

ε =


εmp if pε > 0.8− 0.3

d

dmax
, εmp < d

εout if pε < pout

εhw else,

(14)

where the outlier probability pout is also an empirical value
describing the outlier probability. Based on this classification
and among the aforementioned measurement failures, three
types of errors are sampled:

εmp ∼ LN (Rmp, σ
2
mp) (15)

εout ∼ U(−d, dmax − d) (16)

εhw ∼ N (0, σ2
r). (17)

εhw represent normally distributed LOS measurements, εout

a uniformly distributed outlier magnitude with respect to the
given reference distance. Finally, εmp is modeled as a right-
skewed log normal distribution [28], where the skewness of
the log normal distribution depends on the diversity of the
NLOS channel. The applied parameters and probabilities are
summarized in Table I.

B. Ranging Simulation

In total, three different ranging distributions are simulated,
where the measurement residuals for each scenario are shown
in Fig. 7 and each scenario emulates different environmental
conditions. In addition, Table I also contains the relative
amount of LOS, NLOS, outlier and failure rates.

Given a constellation of 13 nodes (cf. Fig. 1), each scenario
contains 1.000 measurement epochs and therefore approxi-
mately 13.000 estimated positions based on around 170.000
ranging measurements, allowing a statistical assessment of
each constellation.

TABLE I: Overview of simulation parameterization for three
simulation scenarios, percentage ranging simulation results
and quantitative positioning performance of both CF and CGP.

I II III

Parameter

PDFs N (0, 0.9) LN (0.8, 1.07)

dmax (m) 100 100 50

pout 0 0.07 0.20

NLOS (%) 0 0.21 0.20

Simulation

LOS (%) 1 0.61 0.56

NLOS (%) 0 0.21 0.20

Outlier (%) 0 0.06 0.15

Failures (%) 0 0.12 0.09

CF

RMSE (m) 0.41 3.80 6.99

1-σ (m) 0.51 2.06 4.01

2-σ (m) 0.93 19.41 37.25

3-σ (m) 1.25 47.22 62.93

Succes (%) 1 0.37 0.36

CGP

RMSE (m) 0.17 0.42 0.93

1-σ (m) 0.28 0.50 1.43

2-σ (m) 0.36 0.58 1.57

3-σ (m) 0.44 0.59 1.58

Succes (%) 1 1 1

Scenario I corresponds to exclusively gaussian noise repre-
senting only LOS measurements. Additionally, scenario II in-
corporates multipath errors, outliers and measurement failures.
Finally, scenario III puts even more emphasis on occurring
outliers.

C. Positioning Performance

In this subsection we provide performance results of the
proposed CGP approach in comparison to the aforementioned
CF method and with respect to the previously introduced
ranging residual distributions (cf. Fig. 7). The qualitative
results for each distribution are shown in Fig. 8. In addition,
the individual root mean square errors (RMSE) and error
quantiles for both CGP and CF are detailed in Table I. A
graphical presentation of quantitative results is also given in
Fig. 9, which depicts the empirical cumulative distribution
functions (ECDFs) for both the CGP and the CF methods and
simulation scenarios.

As expected, scenario I achieves the most accurate position
estimates. The underlying gaussian distribution contains no
multipath effects, outliers and observation failures so that the
ECDFs of both methods converges quickly (cf. Fig. 9) and
reveals a RMSE of 0.41m respectively 0.17m for CF and
CGP with a 3 − σ error quantile (99, 73%) of 1.25m and
0.44m.

The results based on data sets II and III which entail
multipath errors εmp about 20% as well as different amounts of
outliers and failures, are qualitatively shown in Figs. 8b and 8c.



(a) I (b) II (c) III

Fig. 7: Histogram of ranging residual PDFs for the examined scenarios. Simulation parameters are included in Table I.

(a) I (b) II (c) III

Fig. 8: Qualitative results of CGP position estimation based on the previously presented residual PDFs (cf. Fig. 7) including
the references (yellow) and estimated node positions (green, blue, red).

Again, the proposed CGP method outperforms the baseline
CF approach in terms of accuracy. This is also underlined in
Fig. 9.

Next to the resulting accuracy, we want to emphasize the
advantages of CGP compared to CF with regards to success
rate. For both scenario II and III, the overall CF success
rate is around 0.36%. Due to the restrictions of observation
availability, the success rate drastically decreases.

For the introduced use case of location-aware smart parking
applications, III reveals that, even in the presence of 15%
outliers and 0.09% measurement failures, a 3 − σ accuracy
of 1.58m was achieved, which corresponds to a parking lot
selective positioning accuracy.

V. CONCLUSION

In this paper, the research topic of auto-positioning for
radio-based localization systems in non-static configurations
was addressed. In general, auto-positioning aims to both
provide position estimation of stationary anchors without time-
consuming position surveying, as well as being to able to
be seamlessly integrated in non-stationary network configu-

rations. In this context, a novel approach of auto-positioning
for node self-calibration, intended to provide robust state
estimation in the presence of NLOS reception, ourliers and
measurement failures, was presented.

This is achieved by extending previously CF methods with
a non-parametric, grid-based formulation, which we referred
to as CGP. In order to emphasize the advantages of CGP
in comparison with CF methods, we discussed and described
three different ranging residual distributions, which correspond
to different environmental and reception scenarios and are
characterized by distinct error occurrence probabilities and
magnitudes.

Based on this, we empirically showed, that the proposed
CGP method was able to outperform the baseline CF approach
both in terms of node positioning accuracy and success rate,
due to the robust formulation as well as imposing fewer re-
quirements for network connectivity and availability of ranging
measurements.
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